getVarCov {nlme}R Documentation

Extract variance-covariance matrix


Extract the variance-covariance matrix from a fitted model, such as a mixed-effects model.


getVarCov(obj, ...)
## S3 method for class 'lme':
getVarCov(obj, individuals,
    type = c("random.effects", "conditional", "marginal"), ...)
## S3 method for class 'gls':
getVarCov(obj, individual = 1, ...)


obj A fitted model. Methods are available for models fit by lme and by gls
individuals For models fit by lme a vector of levels of the grouping factor can be specified for the conditional or marginal variance-covariance matrices.
individual For models fit by gls the only type of variance-covariance matrix provided is the marginal variance-covariance of the responses by group. The optional argument individual specifies the group of responses.
type For models fit by lme the type argument specifies the type of variance-covariance matrix, either "random.effects" for the random-effects variance-covariance (the default), or "conditional" for the conditional. variance-covariance of the responses or "marginal" for the the marginal variance-covariance of the responses.
... Optional arguments for some methods, as described above


A variance-covariance matrix or a list of variance-covariance matrices.


Mary Lindstrom

See Also

lme, gls


fm1 <- lme(distance ~ age, data = Orthodont, subset = Sex == "Female")
getVarCov(fm1, individual = "F01", type = "marginal")
getVarCov(fm1, type = "conditional")
fm2 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
           correlation = corAR1(form = ~ 1 | Mare))

[Package nlme version 3.1-57 Index]