Convergence Diagnostics For Markov chain Monte Carlo

Eric B. Ford (Penn State)
Bayesian Computing for Astronomical Data Analysis
June 4, 2016
MCMC: A Science & an Art

• Science:
 If your algorithm is designed properly, the Markov chain will converge to the target distribution... after infinite iterations

• Art:
 When is it wise to make inferences based on a finite Markov chain
Assessing Convergence is Essential

If you want to:

• Base your conclusions on posterior distributions
• Report accurate parameter estimates & uncertainties
• Avoid fooling yourself
• Avoid devoting resources (e.g., your effort, telescope time) to follow-up an “inference” that isn’t supported by data
• Avoid writing an erratum to your paper
Has this Chain Converged?

Traceplot of Y 100x Longer

Iteration
Has this Chain Converged?
Good Signs

• Any sufficiently large segment of Markov chain would give similar results
• Desirable acceptance rate of proposed steps
• Chain “mixes well” (i.e., chain has run much longer than any observed timescale for correlation between samples)
• Multiple chains initialized from different initial conditions give similar results
• MCMC analysis of similar problem using simulated data give accurate results, even with significantly fewer iterations
Why Only “Maybe”?

• You can’t prove convergence
 – At best, you fail to prove a failure to converge

• Convergence rate can be exponentially sensitive to barriers between local modes.

• What if there’s a narrow bottleneck between two regions of high probability?

• What if there’s another posterior mode that we’ve completely overlooked?
What should I do?

• Be paranoid
• Run chains longer than you think you need to
• Compute several Markov chains
 – initialized with significantly different initial states
• Look at your Markov chains yourself
 – Trace plots
 – Marginal joint densities
What warning signs should I be looking for?

• Differences within or across Markov chains
• “Poor mixing”
• Low/high acceptance rates
• Autocorrelation between states of Markov chain
• Strongly correlated parameters
• Suspicious tails or posterior shapes
Check Autocorrelation of Markov chain

• Autocorrelation as a function of lag

\[\rho_{\text{lag}} = \frac{\sum_{i}^{N-\text{lag}} (\theta_i - \bar{\theta})(\theta_{i+\text{lag}} - \bar{\theta})}{\sum_{i}^{N} (\theta_i - \bar{\theta})^2} \]

(For computing autocorrelations at many lags, it’s faster to use an FFT-based method)

• What is smallest lag to give an \(\rho_{\text{lag}} \approx 0 \)?

• One of several methods for estimating how many iterations of Markov chain are needed for effectively independent samples
Checking Autocorrelation Function
Getting More Quantitative

Calculate convergence diagnostics

- Geweke (1992): Compares means calculated from distinct segments of Markov chain
- Raftery & Lewis (1992): Estimates the \textit{minimum} chain length needed to estimate a percentile to some precision
- Gelman & Rubin (1992): \hat{R} compares variances between chains
- Brooks & Gelman (1998): Several generalizations of \hat{R}
 - Account for covariances
 - Can apply to higher moments
 - Scale reduction for arbitrary credible intervals
Estimate Potential Scale Reduction Factor

Gelman-Rubin diagnostic (\hat{R})

- Compute m independent Markov chains
- Compares variance of each chain to pooled variance
- If initial states (θ_{1j}) are overdispersed, then \hat{R} approaches unity from above
- Provides estimate of how much variance could be reduced by running chains longer
- It is an estimate!

\[
W = \frac{1}{m} \sum_{j=1}^{m} s_j^2 \\
B = \frac{n}{m-1} \sum_{j=1}^{m} (\bar{\theta}_j - \bar{\theta})^2 \\
\bar{\theta} = \frac{1}{m} \sum_{j=1}^{m} \bar{\theta}_j \\
s_j^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\theta_{ij} - \bar{\theta}_j)^2 \\
\hat{\text{Var}}(\theta) = (1 - \frac{1}{n})W + \frac{1}{n}B \\
\hat{R} = \sqrt{\frac{\hat{\text{Var}}(\theta)}{W}}
\]
Estimate Potential Scale Reduction Factor

Bare Minimum:

• Check \hat{R} for each model parameter
• Check \hat{R} for any important functions of model parameters

Better:

• Consider applying a generalization that checks for covariances, moments or intervals of interest
Estimate Potential Scale Reduction Factor

Returning to previous example:

• Gelman-Rubin diagnostic (\hat{R}) is <1.001

• Consider generalized statistic

$$\hat{R}_{\text{interval}} = \frac{\text{length of total-sequence interval}}{\text{mean length of the within-sequence intervals}}$$

for central $(1-\alpha)$ credible interval

• Plot as function of α
Estimate Potential Scale Reduction Factor

![Graph showing Potential Scale Reduction Factor for 1-\(\alpha\) Credible Interval vs. \(\alpha\)]
Estimate Potential Scale Reduction Factor

The graph shows the Potential Scale Reduction Factor for different samples (Y 1,000, Y 3,000, Y 10,000, Y 100,000) plotted against the value of α. The x-axis represents α on a logarithmic scale, while the y-axis represents the Potential Scale Reduction Factor for $1 - \alpha$ Credible Interval. The graph indicates how the reduction factor changes as α varies for each sample size.
Test using Simplified Problems where You Can Compare to Target Density

This target distribution for the first example was:

• \(p(x,y) = p(x) \ p(y) \)
• \(p(x) \) is LogNormal (zero mean, unit scale)
 \[
 f_X(x; \mu, \sigma) = \frac{1}{x \sigma \sqrt{2\pi}} \ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, \quad x > 0
 \]
• \(p(y) \) is InverseGamma (unit shape, unit scale)
 \[
 f(x; \alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha-1} \exp\left(-\frac{\beta}{x}\right)
 \]
Test using Simplified Problems where You Can Compare to Target Density
Use Problematic Runs to Improve Your Algorithm

• Why did our Markov chains struggle on a relatively simple target distribution?
• How could we change our algorithm to accelerate convergence?
Has this Chain Converged?

• Let’s try this game again...
Has this Chain Converged?
My chain isn’t perfect... Now what?

• What is your goal?
 – Ball park estimate of the median value of a parameter
 – Precisely define the boundary of a 99.9% credible region

• What are the consequences?

• Different goals merit different levels of paranoia
My chain isn’t perfect... Now what?

• Run Markov chains for many more iterations
• Change problem and/or algorithm to accelerate convergence
How a non Non-Converged Markov chain be Useful?

• Even if your chains haven’t converged, have they allowed you to learn something about your target density?

• Can you change your algorithm so it will converge more quickly?
 – Change step sizes?
 – Alternative parameterization of problem?
 – Change proposal distribution of MCMC?
 – Solve problem via Importance Sampling?
Pause for Questions
Ensemble MCMC: A Great Tool for Target Densities with Correlations Between Parameters

Eric B. Ford (Penn State)
Bayesian Computing for Astronomical Data Analysis
June 4, 2016
Simple Markov Chain Monte Carlo

- Initialise chain with θ_0 (initial guess)
- Loop (iterate over t)
 1. Propose trial state, θ', according to $k(\theta' | \theta_t)$.
 2. Calculate unnormalized posterior probability for trial state, $q(\theta') \sim p(\theta' | \text{Data, Model})$.
 3. Accept or reject trial state
 - Draw random number, $u \sim U[0,1)$
 - $\alpha(\theta' | \theta_t) = [q(\theta') k(\theta_t | \theta')] / [q(\theta_t) k(\theta' | \theta_t)]$
 - If $u \leq \alpha(\theta' | \theta_t)$, then set $\theta_{t+1} = \theta'$ (accept)
 - If $u > \alpha(\theta' | \theta_t)$, then set $\theta_{t+1} = \theta_t$ (reject)
- Test for non-convergence
Why Go Beyond Simple MCMC?

• Standard MCMC converges extremely slowly if the proposal distribution is not well chosen
 – It’s hard to find a good proposal distribution for complex problems (e.g., many parameters)
 – Want a way to automatically choose good proposal distribution

• Standard MCMC evaluates 1 model at a time
 – Parallelizing standard MCMC requires parallelizing the model evaluation (may be impractical)
What is Ensemble/Population MCMC?

• Instead of updating one set of model parameters at a time, update an ensemble/population of model parameters each “generation”

• Technically, the Markov chain is now over a product space of your model parameters
Advantages of Ensemble MCMC

Ensemble MCMC:

- Can take advantage of having a population of model parameters when proposing each trial set of model parameters
- Makes it easy to parallelize over each set of model parameters within a generation
Two Specific Ensemble MCMC Algorithms

• Differential Evolution MCMC
 (ter Braak 2006; ter Braak & Vgurt 2008; Nelson et al. 2014)
 – Combines three states from previous generation for each trial state

• Affine-Invariant Ensemble MCMC
 (Goodman & Weare 2010; Foreman-Mackey et al. 2013)
 – Combines two states from previous generation for each trial state

• Both algorithms
 – Automatically infer shape & scale for proposals
 – Require only a few new parameters (and performance is typically insensitive to their choice)
Affine-Invariant Ensemble MCMC

Candidate for update
Affine-Invariant Ensemble MCMC

Candidate for update
Affine-Invariant Ensemble MCMC

Candidate for update

Proposed displacement direction
Affine-Invariant Ensemble MCMC

Candidate for update

Proposal
Affine-Invariant Ensemble MCMC

Implementation details

• Proposal step: $\theta_i' = \theta_{t,j} + z [\theta_{t,i} - \theta_{t,j}]$
 – z: random variable drawn from distribution $g(z) = z g(z)$
 – Update parameters for each “chain” in blocks

• Acceptance probability $\alpha = \min[1, z^{Nd-1} q(\theta')/q(\theta_{t,i})]$
 – N_d = dimension of parameter space
 – Target distribution: $q(\theta) \sim p(\theta'|\text{Data,Model})$

• Tunable parameters: a, $g(z)$ and N_{chains} (population size)

• Suggestions
 – $g(z) = z^{-1/2}$, $z \in [a^{-1},a]$, 0, else
 – $a = 2$
 – $N_{\text{chains}} > \text{few} \times N_d$

Goodman & Weare 2010
Foreman-Mackey et al. 2013
Differential Evolution MCMC

Candidate for update
Differential Evolution MCMC

Candidate for update

i, j, k
Differential Evolution MCMC

Candidate for update

Proposed displacement (scaled)
Differential Evolution MCMC

Candidate for update

Proposal

 Proposed displacement (scaled)
Differential Evolution MCMC

Implementation details

• Proposal step: \(\theta' = \theta_{t,i} + \gamma [\theta_{t,k} - \theta_{t,j}] \) (most of the time)
 - \(\gamma = \gamma_0 (1 + z) \)
 - \(z \sim N(0, \sigma^2_\gamma) \)
 - \(\gamma_0 = 2.38 / (2N_{\text{dim}})^{1/2} \), (initially, can adjust to improve acceptance rate)
 - Update parameters for each “chain” in blocks

• Optionally, occasionally use large proposal steps
 - \(\gamma = (1 + z) \quad z \sim N(0, \sigma^2_\gamma) \)

• Acceptance probability: same as standard MCMC

• Tunable parameters: \(\sigma_\gamma \), and \(N_{\text{chains}} \) (population size)

• Suggestions:
 - \(N_{\text{chains}} > \text{few} \times N_d \)
 - \(0.001 < \sigma_\gamma < 0.1 \) (quite insensitive in our tests; Nelson et al 2014)
 - Adapt \(\gamma_0 \) to achieve good acceptance rate (~0.25)

Nelson et al. 2014
Choosing Initial Population

• Generate initial population from prior
 – Great... if it works
 – But often get stuck in local maxima, resulting in unreasonable number of generations to complete burn-in

• Generate initial population close to posterior
 – Dramatically reduces burn-in time
 – But what if you missed another important posterior maxima?

• Compromise: Generate initial population to be near posterior, but more dispersed than posterior
How Can Things Still Go Wrong?

• Initial population too far from target density
 – Choose initial population close to target density
 – Test that results insensitive to choice

• Non-linear correlations between parameters
 – Results in long auto-correlation times
 – Increasingly problematic with higher-dimensional parameter spaces

• Multi-modal target density
 – DEMCMC can deal with a few viable modes, but autocorrelation time increases
Example Application of DEMCMC

Measuring planet masses & orbits from Doppler observations of Exoplanet Systems

• Physical Model
 – Non-Interacting: Linear superposition of Keplerian orbits
 \[v_{\ast,\vec{\theta}}(t,j) = \sum_i K_i \{ \cos[\omega_i + f_i(t)] + e_i \cos \omega_i \} + C_j \]
 – Interacting: Full n-body model
 \[\frac{d^2 \vec{r}_i}{dt^2} = -\sum_{j=1}^N \frac{Gm_j (\vec{r}_i - \vec{r}_j)}{|\vec{r}_i - \vec{r}_j|^3} \]

• Likelihood assumes observations with uncorrelated, Gaussian uncertainties

\[\chi^2 = \sum_k \frac{[v_{\ast,obs}(t_k,j_k) - v_{\ast,\vec{\theta}}(t_k,j_k)]^2}{(\sigma_{\ast,obs}(t_k,j_k)^2 + \sigma_{jit}^2)} \]
How Can Things Still Go Wrong?

• Initial population too far from target density
 – Choose initial population close to target density
 – Test that results insensitive to choice

• Non-linear correlations between parameters
 – Results in long auto-correlation times
 – Increasingly problematic with higher-dimensional parameter spaces

• Multi-modal target density
 – DEMCMC can deal with a few viable modes, but autocorrelation time increases
What if Poor Initial Population?
Test Burn-In Required using Synthetic Data

- For initial population, take posterior sample and increase dispersion about mean

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]

\[\beta = 1\sigma \]

\[\beta = 3\sigma \]

\[\beta = 5\sigma \]
How Can Things Still Go Wrong?

• Initial population too far from target density
 – Choose initial population close to target density
 – Test that results insensitive to choice

• Non-linear correlations between parameters
 – Results in long auto-correlation times
 – Increasingly problematic with higher-dimensional parameter spaces

• Multi-modal target density
 – DEMCMC can deal with a few viable modes, but autocorrelation time increases
Non-Linear Parameter Correlations

Linear Correlations
(still efficient)

Non-Linear Correlations
(reduce efficiency)

Hou et al. 2012
Ford 2006
Check Sufficient Effective Sample Size

Often, it is practical to run DEMC2C longer to make up for correlations among samples

- Check autocorrelation and other MCMC diagnostics for all parameters of interest

Nelson et al. 2014
How Can Things Still Go Wrong?

• Initial population too far from target density
 – Choose initial population close to target density
 – Test that results insensitive to choice

• Non-linear correlations between parameters
 – Results in long auto-correlation times
 – Increasingly problematic with higher-dimensional parameter spaces

• Multi-modal target density
 – DEMCMC can deal with a few viable modes, but autocorrelation time increases
Dealing with Multiple Modes

First, Identify Relevant Portion of Parameter Space

• Physical intuition
• Simplified statistical model
• Simplified physical model
• Analyze subset of data

Then, perform MCMC with good initial guesses

• Include samples from each viable mode

(See also Parallel Tempering or Importance Sampling)
Pause for Questions
Example Application of DEMCMC

• Non-interacting systems & Doppler observations:
 – \(\sim 5 \times N_{\text{planets}}\) physical model parameters
 – Model evaluation is very fast
 – Can require \(\sim 10^7\) model evaluations
 – Parameter estimation is “solved” problem
 – Use dozens of physically-motivated proposals that deal with non-linear correlations

• Strongly Interacting planetary systems:
 – \(\sim 7 \times N_{\text{planets}}\) physical model parameters
 – Can require \(\sim 10^{10}\) model evaluations
 – Model evaluation is slow, since requires n-body integration
 – Computationally demanding
 – Requires clever algorithms & parallel computation
55 Cnc: An RV Classic

55 Cnc: Astroinformatics in Action

- 1,086 RVs from 4 observatories, spanning over 23 years
- Self-consistent Bayesian Analysis w/ full N-body treatment
- 40 dimensional parameter space
- ~3 weeks of computation w/ GPU (before stability tests)
- N-body integrations using Swarm-NG GPU (Dindar+ 2012)

B. Nelson et al. 2014
55 Cnc: Evidence for Disk Migration

Near 1:3 MMR "Super-Earth" Jupiter Analog

Apsidal Alignment

B. Nelson et al. 2014
55 Cnc: Density of a Super-Earth

Density (g/cm³) "Super-Earth"

Probability

Near 1:3 MMR

Jupiter Analog

Endl et al. 2012

B. Nelson et al. 2014
55 Cnc: A True Jupiter Analog

Near 1:3 MMR

"Super-Earth"

Apsidal Alignment

55 Cnc A

B. Nelson et al. 2014
Example Application of DEMCMC

Measuring planet masses & orbits from Kepler light curves of stars with multiple transiting planets

• Physical Model:
 – Orbits: Either non-interacting or full n-body model
 – Light curves: Limb darkening, stellar activity

• Likelihood:
 – Assume each flux measurements has uncorrelated, Gaussian uncertainties, or
 – Could account for correlated noise
Characterizing Kepler’s Systems with Interacting Planets: Kepler-36 b & c

Carter et al. 2012

30 min exposure time

1 min exposure time

Carter et al. 2012
Characterizing Planet Masses for Rapidly Interacting Systems

Kepler-36b&c: Chaotic due to 29:34 and 6:7 MMRs!

Two-Parameter Marginal Posterior Distributions

- Complex observational constraints
- Impractical to understand correlations a priori
- DEMCMC unphased by correlations
- ~10,000 CPU hours using 128 cores (MPI) for ~1¼ years of observations

Carter et al. 2012
High-precision masses key for studying planet mass-radius relationship

Jontof-Hutter et al. 2016
Questions?
and
Discussion