Introduction to Bayesian Inference

Tom Loredo
Dept. of Astronomy, Cornell University
http://www.astro.cornell.edu/staff/loredo/bayes/

CASSt Summer School — June 7, 2007
Outline

1. The Big Picture
2. Foundations—Logic & Probability Theory
3. Inference With Parametric Models
 - Parameter Estimation
 - Model Uncertainty
4. Simple Examples
 - Binary Outcomes
 - Normal Distribution
 - Poisson Distribution
5. Application: Extrasolar Planets
6. Probability & Frequency
Outline

1. The Big Picture

2. Foundations—Logic & Probability Theory

3. Inference With Parametric Models
 - Parameter Estimation
 - Model Uncertainty

4. Simple Examples
 - Binary Outcomes
 - Normal Distribution
 - Poisson Distribution

5. Application: Extrasolar Planets

6. Probability & Frequency

Scientific Method

Science is more than a body of knowledge; it is a way of thinking. The method of science, as stodgy and grumpy as it may seem, is far more important than the findings of science.

—Carl Sagan

Scientists *argue!*

Argument ≡ Collection of statements comprising an act of reasoning from premises to a conclusion

A key goal of science: Explain or predict *quantitative measurements*

Framework: Mathematical modeling

⇒ Science uses rational argument to construct and appraise mathematical models for measurements
Mathematical Models

A model (in physics) is a representation of structure in a physical system and/or its properties. (Hestenes)

\[\text{REAL WORLD} \quad \text{TRANSLATION & INTERPRETATION} \quad \text{MATHEMATICAL WORLD}\]

A model is a surrogate

The model is not the modeled system! It “stands in” for the system for a particular purpose, and is subject to revision.

A model is an idealization

A model is a *caricature* of the system being modeled (Kac). It focuses on a subset of system properties of interest.
A model is an abstraction

Models identify common features of different things so that general ideas can be created and applied to different situations.

We seek a mathematical model for quantifying uncertainty—it will share these characteristics with physical models.

Asides

Theories are frameworks guiding model construction (laws, principles).

Physics as modeling is a leading school of thought in physics education research; e.g., http://modeling.la.asu.edu/
The Role of Data

Data do not speak for themselves!

We don’t just *tabulate* data, we *analyze* data.

We gather data so they may speak for or against existing hypotheses, and guide the formation of new hypotheses.

A key role of data in science is to be among the premises in scientific arguments.
Statistical inference is but one of several interacting modes of analyzing data.
Bayesian Statistical Inference

• A different approach to all statistical inference problems (i.e., not just another method in the list: BLUE, maximum likelihood, χ^2 testing, ANOVA, survival analysis . . .)

• Foundation: Use probability theory to quantify the strength of arguments (i.e., a more abstract view than restricting PT to describe variability in repeated “random” experiments)

• Focuses on deriving consequences of modeling assumptions rather than devising and calibrating procedures
Outline

1. The Big Picture

2. Foundations—Logic & Probability Theory

3. Inference With Parametric Models
 - Parameter Estimation
 - Model Uncertainty

4. Simple Examples
 - Binary Outcomes
 - Normal Distribution
 - Poisson Distribution

5. Application: Extrasolar Planets

6. Probability & Frequency
Logic—Some Essentials

“Logic can be defined as *the analysis and appraisal of arguments*”
—Gensler, *Intro to Logic*

Build arguments with propositions and logical operators/connectives

- **Propositions:** Statements that may be true or false
 - \(\mathcal{P} \): Universe can be modeled with \(\Lambda \)CDM
 - \(A \): \(\Omega_{\text{tot}} \in [0.9, 1.1] \)
 - \(B \): \(\Omega_{\Lambda} \) is not 0
 - \(\overline{B} \): not \(B \), i.e., \(\Omega_{\Lambda} = 0 \)

- **Connectives:**
 - \(A \land B \): \(A \) and \(B \) are both true
 - \(A \lor B \): \(A \) or \(B \) is true, or both are
Arguments

Argument: Assertion that an *hypothesized conclusion*, H, follows from *premises*, $\mathcal{P} = \{A, B, C, \ldots\}$ (take “,” = “and”)

Notation:

$$H|\mathcal{P} : \text{Premises } \mathcal{P} \text{ imply } H$$

- H may be deduced from \mathcal{P}
- H follows from \mathcal{P}
- H is true given that \mathcal{P} is true

Arguments are (compound) propositions.

Central role of arguments \rightarrow special terminology:

- A true argument is *valid*
- A false argument is *invalid* or *fallacious*
Valid vs. Sound Arguments

Content vs. form

- An argument is \textit{factually correct} iff all of its premises are true (it has “good content”).
- An argument is \textit{valid} iff its conclusion \textit{follows from} its premises (it has “good form”).
- An argument is \textit{sound} iff it is both \textit{factually correct and valid} (it has good form and content).

We want to make \textit{sound} arguments. Logic and statistical methods address validity, but there is no formal approach for addressing factual correctness.
Factual Correctness

Although logic can teach us something about validity and invalidity, it can teach us very little about factual correctness. The question of the truth or falsity of individual statements is primarily the subject matter of the sciences.

— Hardegree, *Symbolic Logic*

To test the truth or falsehood of premisses is the task of science. . . . But as a matter of fact we are interested in, and must often depend upon, the correctness of arguments whose premisses are not known to be true.

— Copi, *Introduction to Logic*
Premises

- **Facts** — Things known to be true, e.g. *observed data*

- **“Obvious” assumptions** — Axioms, postulates, e.g., Euclid’s first 4 postulates (line segment b/t 2 points; congruency of right angles . . .)

- **“Reasonable” or “working” assumptions** — E.g., Euclid’s fifth postulate (parallel lines)

- *Desperate presumption!*

- Conclusions from other arguments
Deductive and Inductive Inference

Deduction—Syllogism as prototype

Premise 1: A implies H
Premise 2: A is true
Deduction: ∴ H is true
H|[^P] is valid

Induction—Analogy as prototype

Premise 1: A, B, C, D, E all share properties x, y, z
Premise 2: F has properties x, y
Induction: F has property z
“F has z”|[^P] is not valid, but may still be rational (likely, plausible, probable); some such arguments are stronger than others

Boolean algebra (and/or/not over \{0, 1\}) quantifies deduction.

Probability theory generalizes this to quantify the strength of inductive arguments.
Real Number Representation of Induction

\[P(H|\mathcal{P}) \equiv \text{strength of argument } H|\mathcal{P} \]

\[P = 0 \rightarrow \text{Argument is invalid} \]

\[= 1 \rightarrow \text{Argument is valid} \]

\[\in (0, 1) \rightarrow \text{Degree of deducibility} \]

A mathematical model for induction:

‘AND’ (product rule) \[P(A \land B|\mathcal{P}) = P(A|\mathcal{P})P(B|A \land \mathcal{P}) \]

\[= P(B|\mathcal{P})P(A|B \land \mathcal{P}) \]

‘OR’ (sum rule) \[P(A \lor B|\mathcal{P}) = P(A|\mathcal{P}) + P(B|\mathcal{P}) - P(A \land B|\mathcal{P}) \]

We will explore the implications of this model.
Interpreting Bayesian Probabilities

If we like there is no harm in saying that a probability expresses a degree of reasonable belief. . . . ‘Degree of confirmation’ has been used by Carnap, and possibly avoids some confusion. But whatever verbal expression we use to try to convey the primitive idea, this expression cannot amount to a definition. Essentially the notion can only be described by reference to instances where it is used. It is intended to express a kind of relation between data and consequence that habitually arises in science and in everyday life, and the reader should be able to recognize the relation from examples of the circumstances when it arises.

— Sir Harold Jeffreys, *Scientific Inference*
More On Interpretation

Physics uses words drawn from ordinary language—mass, weight, momentum, force, temperature, heat, etc.—but their technical meaning is more abstract than their colloquial meaning. We can map between the colloquial and abstract meanings associated with specific values by using specific instances as “calibrators.”

A Thermal Analogy

<table>
<thead>
<tr>
<th>Intuitive notion</th>
<th>Quantification</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot, cold</td>
<td>Temperature, T</td>
<td>Cold as ice = 273K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boiling hot = 373K</td>
</tr>
<tr>
<td>uncertainty</td>
<td>Probability, P</td>
<td>Certainty = 0, 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p = 1/36$: plausible as “snake’s eyes”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p = 1/1024$: plausible as 10 heads</td>
</tr>
</tbody>
</table>
A Bit More On Interpretation

Bayesian

Probability quantifies uncertainty in an inductive inference. $p(x)$ describes how *probability* is distributed over the possible values x might have taken in the single case before us:

![Bayesian Diagram](image)

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies in an ensemble. $p(x)$ describes variability, how the *values of x* are distributed among the cases in the ensemble:

![Frequentist Diagram](image)
Arguments Relating Hypotheses, Data, and Models

We seek to appraise scientific hypotheses in light of observed data and modeling assumptions.

Consider the data and modeling assumptions to be the premises of an argument with each of various hypotheses, H_i, as conclusions: $H_i|D_{obs}, I$. ($I =$ “background information,” everything deemed relevant besides the observed data)

$P(H_i|D_{obs}, I)$ measures the degree to which (D_{obs}, I) allow one to deduce H_i. It provides an ordering among arguments for various H_i that share common premises.

Probability theory tells us how to analyze and appraise the argument, i.e., how to calculate $P(H_i|D_{obs}, I)$ from simpler, hopefully more accessible probabilities.
The Bayesian Recipe

Assess hypotheses by calculating their probabilities $p(H_i|\ldots)$ conditional on known and/or presumed information using the rules of probability theory.

Probability Theory Axioms:

‘OR’ (sum rule) \[P(H_1 \lor H_2 | I) = P(H_1 | I) + P(H_2 | I) - P(H_1, H_2 | I) \]

‘AND’ (product rule) \[P(H_1, D | I) = P(H_1 | I) P(D | H_1, I) = P(D | I) P(H_1 | D, I) \]
Bayes’s Theorem (BT)

Consider $P(H_i, D_{obs}|I)$ using the product rule:

$$P(H_i, D_{obs}|I) = P(H_i|I) P(D_{obs}|H_i, I) = P(D_{obs}|I) P(H_i|D_{obs}, I)$$

Solve for the posterior probability:

$$P(H_i|D_{obs}, I) = P(H_i|I) \frac{P(D_{obs}|H_i, I)}{P(D_{obs}|I)}$$

Theorem holds for any propositions, but for hypotheses & data the factors have names:

$posterior \propto prior \times likelihood$

norm. const. $P(D_{obs}|I) = prior \, predictive$
Law of Total Probability (LTP)

Consider exclusive, exhaustive \(\{B_i\} \) (\(I \) asserts one of them must be true),

\[
\sum_i P(A, B_i | I) = \sum_i P(B_i | A, I) P(A | I) = P(A | I)
\]

\[
= \sum_i P(B_i | I) P(A | B_i, I)
\]

If we do not see how to get \(P(A | I) \) directly, we can find a set \(\{B_i\} \) and use it as a "basis"—extend the conversation:

\[
P(A | I) = \sum_i P(B_i | I) P(A | B_i, I)
\]

If our problem already has \(B_i \) in it, we can use LTP to get \(P(A | I) \) from the joint probabilities—marginalization:

\[
P(A | I) = \sum_i P(A, B_i | I)
\]
Example: Take \(A = D_{\text{obs}}, B_i = H_i \); then

\[
P(D_{\text{obs}}|I) = \sum_i P(D_{\text{obs}}, H_i|I)
\]

\[
= \sum_i P(H_i|I)P(D_{\text{obs}}|H_i, I)
\]

prior predictive for \(D_{\text{obs}} = \) Average likelihood for \(H_i \)
(aka “marginal likelihood”)

Normalization

For exclusive, exhaustive \(H_i \),

\[
\sum_i P(H_i|\cdots) = 1
\]
Well-Posed Problems

The rules express desired probabilities in terms of other probabilities.

To get a numerical value *out*, at some point we have to put numerical values *in*.

Direct probabilities are probabilities with numerical values determined directly by premises (via modeling assumptions, symmetry arguments, previous calculations, desperate presumption . . .).

An inference problem is *well posed* only if all the needed probabilities are assignable based on the premises. We may need to add new assumptions as we see what needs to be assigned. We may not be entirely comfortable with what we need to assume! (Remember Euclid’s fifth postulate!)

Should explore how results depend on uncomfortable assumptions ("robustness").
Recap

Bayesian inference is more than BT

Bayesian inference quantifies uncertainty by reporting probabilities for things we are uncertain of, given specified premises.
It uses all of probability theory, not just (or even primarily) Bayes’s theorem.

The Rules in Plain English

- Ground rule: Specify premises that include everything relevant that you know or are willing to presume to be true (for the sake of the argument!).

- BT: Make your appraisal account for all of your premises.

 Things you know are false must not enter your accounting.

- LTP: If the premises allow multiple arguments for a hypothesis, its appraisal must account for all of them.

 Do not just focus on the most or least favorable way a hypothesis may be realized.
Outline

1 The Big Picture

2 Foundations—Logic & Probability Theory

3 Inference With Parametric Models
 Parameter Estimation
 Model Uncertainty

4 Simple Examples
 Binary Outcomes
 Normal Distribution
 Poisson Distribution

5 Application: Extrasolar Planets

6 Probability & Frequency
Models M_i ($i = 1$ to N), each with parameters θ_i, each imply a sampling dist’n (conditional predictive dist’n for possible data):

$$p(D|\theta_i, M_i)$$

The θ_i dependence when we fix attention on the observed data is the likelihood function:

$$\mathcal{L}_i(\theta_i) \equiv p(D_{\text{obs}}|\theta_i, M_i)$$

We may be uncertain about i (model uncertainty) or θ_i (parameter uncertainty).
Three Classes of Problems

Parameter Estimation

Premise = choice of model (pick specific i)
→ What can we say about θ_i?

Model Assessment

- Model comparison: Premise = $\{M_i\}$
 → What can we say about i?

- Model adequacy/GoF: Premise = $M_1 \lor \text{“all” alternatives}$
 → Is M_1 adequate?

Model Averaging

Models share some common params: $\theta_i = \{\phi, \eta_i\}$
→ What can we say about ϕ w/o committing to one model?
(Systematic error is an example)
Parameter Estimation

Problem statement

\(I = \) Model \(M \) with parameters \(\theta \) (+ any add’l info)
\(H_i = \) statements about \(\theta \); e.g. “\(\theta \in [2.5, 3.5]\),” or “\(\theta > 0 \)”

Probability for any such statement can be found using a probability density function (PDF) for \(\theta \):

\[
P(\theta \in [\theta, \theta + d\theta]| \cdots) = f(\theta)d\theta = p(\theta|\cdots)d\theta
\]

Posterior probability density

\[
p(\theta|D, M) = \frac{p(\theta|M) \mathcal{L}(\theta)}{\int d\theta \ p(\theta|M) \mathcal{L}(\theta)}
\]
Summaries of posterior

- “Best fit” values:
 - Mode, \(\hat{\theta} \), maximizes \(p(\theta|D, M) \)
 - Posterior mean, \(\langle \theta \rangle = \int d\theta \theta p(\theta|D, M) \)

- Uncertainties:
 - Credible region \(\Delta \) of probability \(C \):
 \[
 C = P(\theta \in \Delta|D, M) = \int_\Delta d\theta p(\theta|D, M)
 \]
 - Highest Posterior Density (HPD) region has \(p(\theta|D, M) \) higher inside than outside
 - Posterior standard deviation, variance, covariances

- Marginal distributions
 - Interesting parameters \(\psi \), nuisance parameters \(\phi \)
 - Marginal dist’n for \(\psi \):
 \[
 p(\psi|D, M) = \int d\phi p(\psi, \phi|D, M)
 \]
Nuisance Parameters and Marginalization

To model most data, we need to introduce parameters besides those of ultimate interest: *nuisance parameters*.

Example

We have data from measuring a rate $r = s + b$ that is a sum of an interesting signal s and a background b. We have additional data just about b. What do the data tell us about s?
Marginal posterior distribution

\[p(s|D, M) = \int db \ p(s, b|D, M) \]

\[\propto p(s|M) \int db \ p(b|s) \mathcal{L}(s, b) \]

\[\equiv p(s|M) \mathcal{L}_m(s) \]

with \(\mathcal{L}_m(s) \) the marginal likelihood for \(s \). For broad prior,

\[\mathcal{L}_m(s) \approx p(\hat{b}_s|s) \mathcal{L}(s, \hat{b}_s) \delta b_s \]

Profile likelihood \(\mathcal{L}_p(s) \equiv \mathcal{L}(s, \hat{b}_s) \) gets weighted by a parameter space volume factor

E.g., Gaussians: \(\hat{s} = \hat{r} - \hat{b}, \quad \sigma_r^2 = \sigma_s^2 + \sigma_b^2 \)

Background subtraction is a special case of background marginalization.
Model Comparison

Problem statement

\[I = (M_1 \lor M_2 \lor \ldots) \] — Specify a set of models.
\[H_i = M_i \] — Hypothesis chooses a model.

Posterior probability for a model

\[
p(M_i|D, I) = p(M_i|I) \frac{p(D|M_i, I)}{p(D|I)} \propto p(M_i|I) \mathcal{L}(M_i)
\]

But \(\mathcal{L}(M_i) = p(D|M_i) = \int d\theta_i \ p(\theta_i|M_i) p(D|\theta_i, M_i) \).

Likelihood for model = Average likelihood for its parameters

\[\mathcal{L}(M_i) = \langle \mathcal{L}(\theta_i) \rangle \]

Varied terminology: Prior predictive = Average likelihood = Global likelihood = Marginal likelihood = (Weight of) Evidence for model
Odds and Bayes factors

Ratios of probabilities for two propositions using the same premises are called *odds*:

\[
O_{ij} \equiv \frac{p(M_i|D,I)}{p(M_j|D,I)} = \frac{p(M_i|I)}{p(M_j|I)} \times \frac{p(D|M_j,I)}{p(D|M_j,I)}
\]

The data-dependent part is called the *Bayes factor*:

\[
B_{ij} \equiv \frac{p(D|M_j,I)}{p(D|M_j,I)}
\]

It is a *likelihood ratio*; the BF terminology is usually reserved for cases when the likelihoods are marginal/average likelihoods.
An Automatic Occam’s Razor

Predictive probabilities can favor simpler models

\[p(D|M_i) = \int d\theta_i \ p(\theta_i|M) \ L(\theta_i) \]
The Occam Factor

Models with more parameters often make the data more probable — for the best fit
Occam factor penalizes models for “wasted” volume of parameter space
Quantifies intuition that models shouldn’t require fine-tuning
Model Averaging

Problem statement

\[I = (M_1 \lor M_2 \lor \ldots) \] — Specify a set of models
Models all share a set of “interesting” parameters, \(\phi \)
Each has different set of nuisance parameters \(\eta_i \) (or different prior info about them)
\(H_i = \) statements about \(\phi \)

Model averaging

Calculate posterior PDF for \(\phi \):

\[
p(\phi|D, I) = \sum_i p(M_i|D, I) p(\phi|D, M_i)
\]

\[
\propto \sum_i \mathcal{L}(M_i) \int d\eta_i p(\phi, \eta_i|D, M_i)
\]

The model choice is a (discrete) nuisance parameter here.
Theme: Parameter Space Volume

Bayesian calculations sum/integrate over parameter/hypothesis space!

(Frequentist calculations average over sample space & typically optimize over parameter space.)

- Marginalization weights the profile likelihood by a volume factor for the nuisance parameters.
- Model likelihoods have Occam factors resulting from parameter space volume factors.

Many virtues of Bayesian methods can be attributed to this accounting for the “size” of parameter space. This idea does not arise naturally in frequentist statistics (but it can be added “by hand”).
Roles of the Prior

Prior has two roles

- Incorporate any relevant prior information
- Convert likelihood from “intensity” to “measure”
 → Accounts for *size of hypothesis space*

Physical analogy

Heat: \[Q = \int dV \ c_v(r) \ T(r) \]

Probability: \[P \propto \int d\theta \ p(\theta|I)\mathcal{L}(\theta) \]

Maximum likelihood focuses on the “hottest” hypotheses.
Bayes focuses on the hypotheses with the most “heat.”
A high-\(T\) region may contain little heat if its \(c_v\) is low or if its volume is small.
A high-\(\mathcal{L}\) region may contain little probability if its prior is low or if its volume is small.
Recap of Key Ideas

- Probability as generalized logic for appraising arguments
- Three theorems: BT, LTP, Normalization
- Calculations characterized by parameter space integrals
 - Credible regions, posterior expectations
 - Marginalization over nuisance parameters
 - Occam’s razor via marginal likelihoods
Outline

1. The Big Picture

2. Foundations—Logic & Probability Theory

3. Inference With Parametric Models
 - Parameter Estimation
 - Model Uncertainty

4. Simple Examples
 - Binary Outcomes
 - Normal Distribution
 - Poisson Distribution

5. Application: Extrasolar Planets

6. Probability & Frequency
Binary Outcomes:
Parameter Estimation

$M = \text{Existence of two outcomes, } S \text{ and } F; \text{ each trial has same probability for } S \text{ or } F$

$H_i = \text{Statements about } \alpha, \text{ the probability for success on the next trial } \rightarrow \text{ seek } p(\alpha|D, M)$

$D = \text{Sequence of results from } N \text{ observed trials:}$

$\text{FFSSSSFSSFS} \ (n = 8 \text{ successes in } N = 12 \text{ trials})$

Likelihood:

$$p(D|\alpha, M) = p(\text{failure}|\alpha, M) \times p(\text{success}|\alpha, M) \times \cdots$$

$$= \alpha^n(1 - \alpha)^{N-n}$$

$$= \mathcal{L}(\alpha)$$
Starting with no information about α beyond its definition, use as an “uninformative” prior $p(\alpha|M) = 1$. Justifications:

- Intuition: Don’t prefer any α interval to any other of same size
- Bayes’s justification: “Ignorance” means that before doing the N trials, we have no preference for how many will be successes:

\[
P(n \text{ success}|M) = \frac{1}{N + 1} \quad \rightarrow \quad p(\alpha|M) = 1
\]

Consider this a convention—an assumption added to M to make the problem well posed.
Prior Predictive

\[p(D|M) = \int d\alpha \alpha^n (1 - \alpha)^{N-n} \]

\[= B(n + 1, N - n + 1) = \frac{n!(N - n)!}{(N + 1)!} \]

A Beta integral, \(B(a, b) \equiv \int dx \ x^{a-1} (1 - x)^{b-1} = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \).
Posterior

\[p(\alpha|D, M) = \frac{(N + 1)!}{n!(N - n)!} \alpha^n (1 - \alpha)^{N-n} \]

A Beta distribution. Summaries:

- Best-fit: \(\hat{\alpha} = \frac{n}{N} = 2/3; \langle \alpha \rangle = \frac{n+1}{N+2} \approx 0.64 \)

- Uncertainty: \(\sigma_\alpha = \sqrt{\frac{(n+1)(N-n+1)}{(N+2)^2(N+3)}} \approx 0.12 \)

Find credible regions numerically, or with incomplete beta function.

Note that the posterior depends on the data only through \(n \), not the \(N \) binary numbers describing the sequence.

\(n \) is a (minimal) Sufficient Statistic.
Binary Outcomes: Model Comparison

Equal Probabilities?

\(M_1: \alpha = 1/2 \)
\(M_2: \alpha \in [0, 1] \) with flat prior.

Maximum Likelihoods

\[
M_1: \quad p(D|M_1) = \frac{1}{2^N} = 2.44 \times 10^{-4}
\]

\[
M_2: \quad \mathcal{L}(\hat{\alpha}) = \left(\frac{2}{3}\right)^n \left(\frac{1}{3}\right)^{N-n} = 4.82 \times 10^{-4}
\]

\[
\frac{p(D|M_1)}{p(D|\hat{\alpha}, M_2)} = 0.51
\]

Maximum likelihoods favor \(M_2 \) (failures more probable).
Bayes Factor (ratio of model likelihoods)

\[p(D|M_1) = \frac{1}{2^N}; \quad \text{and} \quad p(D|M_2) = \frac{n!(N-n)!}{(N+1)!} \]

\[\rightarrow B_{12} \equiv \frac{p(D|M_1)}{p(D|M_2)} = \frac{(N+1)!}{n!(N-n)!2^N} = 1.57 \]

Bayes factor (odds) favors \(M_1 \) (equiprobable).

Note that for \(n = 6 \), \(B_{12} = 2.93 \); for this small amount of data, we can never be very sure results are equiprobable.

If \(n = 0 \), \(B_{12} \approx 1/315 \); if \(n = 2 \), \(B_{12} \approx 1/4.8 \); for extreme data, 12 flips can be enough to lead us to strongly suspect outcomes have different probabilities.

(Frequentist significance tests can reject null for any sample size.)
Binary Outcomes: Binomial Distribution

Suppose $D = n$ (number of heads in N trials), rather than the actual sequence. What is $p(\alpha|n, M)$?

Likelihood

Let $S = \text{a sequence of flips with } n \text{ heads.}$

$$p(n|\alpha, M) = \sum_S p(S|\alpha, M) p(n|S, \alpha, M)$$

$$= \alpha^n (1 - \alpha)^{N-n} C_{n,N}$$

$C_{n,N} = \# \text{ of sequences of length } N \text{ with } n \text{ heads.}$

$$\rightarrow p(n|\alpha, M) = \frac{N!}{n!(N-n)!} \alpha^n (1 - \alpha)^{N-n}$$

The binomial distribution for n given α, N.
Posterior

\[p(\alpha|n, M) = \frac{N!}{n!(N-n)!} \alpha^n (1 - \alpha)^{N-n} \]

\[p(n|M) = \frac{N!}{n!(N-n)!} \int d\alpha \alpha^n (1 - \alpha)^{N-n} = \frac{1}{N+1} \]

\[\rightarrow p(\alpha|n, M) = \frac{(N+1)!}{n!(N-n)!} \alpha^n (1 - \alpha)^{N-n} \]

Same result as when data specified the actual sequence.
Another Variation: Negative Binomial

Suppose $D = N$, the number of trials it took to obtain a predefined number of successes, $n = 8$. What is $p(\alpha | N, M)$?

Likelihood

$p(N | \alpha, M)$ is probability for $n - 1$ successes in $N - 1$ trials, times probability that the final trial is a success:

$$p(N | \alpha, M) = \frac{(N - 1)!}{(n - 1)!(N - n)!} \alpha^{n-1} (1 - \alpha)^{N-n} \alpha$$

$$= \frac{(N - 1)!}{(n - 1)!(N - n)!} \alpha^n (1 - \alpha)^{N-n}$$

The *negative binomial distribution* for N given α, n.
Posterior

\[p(\alpha|D, M) = C'_{n,N} \frac{\alpha^n(1 - \alpha)^{N-n}}{p(D|M)} \]

\[p(D|M) = C'_{n,N} \int d\alpha \alpha^n(1 - \alpha)^{N-n} \]

\[\rightarrow p(\alpha|D, M) = \frac{(N + 1)!}{n!(N - n)!} \alpha^n(1 - \alpha)^{N-n} \]

Same result as other cases.
Final Variation: Meteorological Stopping

Suppose \(D = (N, n) \), the number of samples and number of successes in an observing run whose total number was determined by the weather at the telescope. What is \(p(\alpha|D, M') \)?

\((M' \) adds info about weather to \(M)\.)

Likelihood

\[
p(D|\alpha, M') = \frac{N!}{n!(N-n)!} \alpha^n (1 - \alpha)^{N-n}
\]

Let \(C_{n,N} = W(N) \binom{N}{n} \). We get the same result as before!
Likelihood Principle

To define $\mathcal{L}(H_i) = p(D_{\text{obs}}|H_i, I)$, we must contemplate what other data we might have obtained. But the “real” sample space may be determined by many complicated, seemingly irrelevant factors; it may not be well-specified at all. Should this concern us?

Likelihood principle: The result of inferences depends only on how $p(D_{\text{obs}}|H_i, I)$ varies w.r.t. hypotheses. We can ignore aspects of the observing/sampling procedure that do not affect this dependence.

This is a sensible property that frequentist methods do not share. Frequentist probabilities are “long run” rates of performance, and thus depend on details of the sample space that may be irrelevant in a Bayesian calculation.

Example: Predict 10% of sample is Type A; observe $n_A = 5$ for $N = 96$
Significance test accepts $\alpha = 0.1$ for binomial sampling;
$p(\chi^2|\alpha = 0.1) = 0.12$
Significance test rejects $\alpha = 0.1$ for negative binomial sampling;
$p(\chi^2|\alpha = 0.1) = 0.03$
Inference With Normals/Gaussians

Gaussian PDF

\[p(x|\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ over } [-\infty, \infty] \]

Common abbreviated notation: \(x \sim N(\mu, \sigma^2) \)

Parameters

\[
\begin{align*}
\mu &= \langle x \rangle \equiv \int dx \ x \ p(x|\mu, \sigma) \\
\sigma^2 &= \langle (x - \mu)^2 \rangle \equiv \int dx \ (x - \mu)^2 \ p(x|\mu, \sigma)
\end{align*}
\]
Gauss’s Observation: Sufficiency

Suppose our data consist of \(N \) measurements, \(d_i = \mu + \epsilon_i \). Suppose the noise contributions are independent, and \(\epsilon_i \sim N(0, \sigma^2) \).

\[
p(D|\mu, \sigma, M) = \prod_i p(d_i|\mu, \sigma, M) \\
= \prod_i p(\epsilon_i = d_i - \mu|\mu, \sigma, M) \\
= \prod_i \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(d_i - \mu)^2}{2\sigma^2} \right] \\
= \frac{1}{\sigma^N (2\pi)^{N/2}} e^{-Q(\mu)/2\sigma^2}
\]
Find dependence of Q on μ by completing the square:

$$Q = \sum_i (d_i - \mu)^2$$

$$= \sum_i d_i^2 + N\mu^2 - 2N\mu \bar{d} \quad \text{where} \quad \bar{d} \equiv \frac{1}{N} \sum_i d_i$$

$$= N(\mu - \bar{d})^2 + Nr^2 \quad \text{where} \quad r^2 \equiv \frac{1}{N} \sum_i (d_i - \bar{d})^2$$

Likelihood depends on $\{d_i\}$ only through \bar{d} and r:

$$L(\mu, \sigma) = \frac{1}{\sigma^N(2\pi)^{N/2}} \exp \left(-\frac{Nr^2}{2\sigma^2} \right) \exp \left(-\frac{N(\mu - \bar{d})^2}{2\sigma^2} \right)$$

The sample mean and variance are sufficient statistics.

This is a miraculous compression of information—the normal dist’n is highly abnormal in this respect!
Problem specification

Model: \(d_i = \mu + \epsilon_i, \epsilon_i \sim N(0, \sigma^2), \sigma \) is known \(\rightarrow I = (\sigma, M) \).

Parameter space: \(\mu \); seek \(p(\mu|D, \sigma, M) \)

Likelihood

\[
p(D|\mu, \sigma, M) = \frac{1}{\sigma^N(2\pi)^{N/2}} \exp \left(-\frac{Nr^2}{2\sigma^2} \right) \exp \left(-\frac{N(\mu - \bar{d})^2}{2\sigma^2} \right) \propto \exp \left(-\frac{N(\mu - \bar{d})^2}{2\sigma^2} \right)
\]
“Uninformative” prior

Translation invariance \(\Rightarrow p(\mu) \propto C \), a constant.
This prior is improper unless bounded.

Prior predictive/normalization

\[
p(D|\sigma, M) = \int \, d\mu \, C \exp \left(-\frac{N(\mu - \bar{d})^2}{2\sigma^2} \right) \\
= C(\sigma/\sqrt{N})\sqrt{2\pi}
\]

\dots minus a tiny bit from tails, using a proper prior.
Posterior

\[p(\mu|D, \sigma, M) = \frac{1}{(\sigma/\sqrt{N})\sqrt{2\pi}} \exp \left(-\frac{N(\mu - \bar{d})^2}{2\sigma^2} \right) \]

Posterior is \(N(\bar{d}, w^2) \), with standard deviation \(w = \sigma/\sqrt{N} \).

68.3% HPD credible region for \(\mu \) is \(\bar{d} \pm \sigma/\sqrt{N} \).

Note that \(C \) drops out \(\rightarrow \) limit of infinite prior range is well behaved.
Informative Conjugate Prior

Use a normal prior, \(\mu \sim N(\mu_0, w_0^2) \)

Posterior

Normal \(N(\tilde{\mu}, \tilde{w}^2) \), but mean, std. deviation “shrink” towards prior.

Define \(B = \frac{w^2}{w^2 + w_0^2} \), so \(B < 1 \) and \(B = 0 \) when \(w_0 \) is large.

Then

\[
\tilde{\mu} = (1 - B) \cdot \bar{d} + B \cdot \mu_0 \\
\tilde{w} = w \cdot \sqrt{1 - B}
\]

“Principle of stable estimation:” The prior affects estimates only when data are not informative relative to prior.
Estimating a Normal Mean: Unknown \(\sigma \)

Problem specification

Model: \(d_i = \mu + \epsilon_i, \, \epsilon_i \sim N(0, \sigma^2), \, \sigma \) is unknown

Parameter space: \((\mu, \sigma)\); seek \(p(\mu | D, \sigma, M) \)

Likelihood

\[
p(D|\mu, \sigma, M) = \frac{1}{\sigma^N(2\pi)^{N/2}} \exp \left(-\frac{Nr^2}{2\sigma^2}\right) \exp \left(-\frac{N(\mu - \bar{d})^2}{2\sigma^2}\right) \\
\propto \frac{1}{\sigma^N} e^{-Q/2\sigma^2}
\]

where \(Q = N \left[r^2 + (\mu - \bar{d})^2 \right] \)
Uninformative Priors

Assume priors for μ and σ are independent.
Translation invariance $\Rightarrow p(\mu) \propto C$, a constant.
Scale invariance $\Rightarrow p(\sigma) \propto 1/\sigma$ (flat in log σ).

Joint Posterior for μ, σ

$$p(\mu, \sigma|D, M) \propto \frac{1}{\sigma^{N+1}} e^{-Q(\mu)/2\sigma^2}$$
Marginal Posterior

\[p(\mu|D, M) \propto \int d\sigma \frac{1}{\sigma^{N+1}} e^{-Q/2\sigma^2} \]

Let \(\tau = \frac{Q}{2\sigma^2} \) so \(\sigma = \sqrt{\frac{Q}{2\tau}} \) and \(|d\sigma| = \tau^{-3/2} \sqrt{\frac{Q}{2}} \)

\[\Rightarrow p(\mu|D, M) \propto 2^{N/2} Q^{-N/2} \int d\tau \tau^{N/2-1} e^{-\tau} \]
\[\propto Q^{-N/2} \]
Write $Q = N r^2 \left[1 + \left(\frac{\mu - \bar{d}}{r} \right)^2 \right]$ and normalize:

$$p(\mu | D, M) = \frac{(\frac{N}{2} - 1)!}{(\frac{N}{2} - \frac{3}{2})! \sqrt{\pi} r} \frac{1}{N} \left[1 + \frac{1}{N} \left(\frac{\mu - \bar{d}}{r / \sqrt{N}} \right)^2 \right]^{-N/2}$$

“Student’s t distribution,” with $t = \frac{(\mu - \bar{d})}{r / \sqrt{N}}$

A “bell curve,” but with power-law tails

Large N:

$$p(\mu | D, M) \sim e^{-N(\mu - \bar{d})^2 / 2r^2}$$
Problem: Observe n counts in T; infer rate, r

Likelihood

$$\mathcal{L}(r) \equiv p(n|r, M) = p(n|r, M) = \frac{(rT)^n}{n!} e^{-rT}$$

Prior

Two standard choices:

- r known to be nonzero; it is a scale parameter:

 $$p(r|M) = \frac{1}{\ln(r_u/r_l)} \frac{1}{r}$$

- r may vanish; require $p(n|M) \sim \text{Const}$:

 $$p(r|M) = \frac{1}{r_u}$$
Prior predictive

\[
p(n|M) = \frac{1}{r_u n!} \int_0^{r_u} dr (rT)^n e^{-rT} \\
= \frac{1}{r_u T n!} \int_0^{r_u T} d(rT) (rT)^n e^{-rT} \\
\approx \frac{1}{r_u T} \text{ for } r_u \gg \frac{n}{T}
\]

Posterior

A gamma distribution:

\[
p(r|n, M) = \frac{T (rT)^n}{n!} e^{-rT}
\]
Gamma Distributions

A 2-parameter family of distributions over nonnegative x, with shape parameter α and scale parameter s:

$$ p_{\Gamma}(x|\alpha, s) = \frac{1}{s\Gamma(\alpha)} \left(\frac{x}{s}\right)^{\alpha-1} e^{-x/s} $$

Moments:

$$ E(x) = s\nu \quad \text{Var}(x) = s^2\nu $$

Our posterior corresponds to $\alpha = n + 1$, $s = 1/T$.

- Mode $\hat{r} = \frac{n}{T}$; mean $\langle r \rangle = \frac{n+1}{T}$ (shift down 1 with $1/r$ prior)
- Std. dev'nn $\sigma_r = \frac{\sqrt{n+1}}{T}$; credible regions found by integrating (can use incomplete gamma function)
$T = 2 \text{ s, } n = 10$
The flat prior

Bayes’s justification: Not that ignorance of \(r \rightarrow p(r|I) = C \)

Require (discrete) predictive distribution to be flat:

\[
p(n|I) = \int dr \ p(r|I)p(n|r, I) = C
\]

\[\rightarrow p(r|I) = C\]

Useful conventions

- Use a flat prior for a rate that may be zero
- Use a log-flat prior (\(\propto 1/r \)) for a nonzero scale parameter
- Use proper (normalized, bounded) priors
- Plot posterior with abscissa that makes prior flat
The On/Off Problem

Basic problem

- Look off-source; unknown background rate b
 Count N_{off} photons in interval T_{off}

- Look on-source; rate is $r = s + b$ with unknown signal s
 Count N_{on} photons in interval T_{on}

- Infer s

Conventional solution

$$\hat{b} = \frac{N_{\text{off}}}{T_{\text{off}}}; \quad \sigma_b = \sqrt{\frac{N_{\text{off}}}{T_{\text{off}}}}$$

$$\hat{r} = \frac{N_{\text{on}}}{T_{\text{on}}}; \quad \sigma_r = \sqrt{\frac{N_{\text{on}}}{T_{\text{on}}}}$$

$$\hat{s} = \hat{r} - \hat{b}; \quad \sigma_s = \sqrt{\sigma_r^2 + \sigma_b^2}$$

But \hat{s} can be negative!
Examples

Spectra of X-Ray Sources

Bassani et al. 1989

Di Salvo et al. 2001
Spectrum of Ultrahigh-Energy Cosmic Rays

Nagano & Watson 2000

HiRes Team 2007

![Graph showing the spectrum of ultrahigh-energy cosmic rays](image)
"Sample sizes are never large. If \(N \) is too small to get a sufficiently-precise estimate, you need to get more data (or make more assumptions). But once \(N \) is ‘large enough,’ you can start subdividing the data to learn more (for example, in a public opinion poll, once you have a good estimate for the entire country, you can estimate among men and women, northerners and southerners, different age groups, etc etc). \(N \) is never enough because if it were ‘enough’ you’d already be on to the next problem for which you need more data.

“Similarly, you never have quite enough money. But that’s another story.”

— Andrew Gelman (blog entry, 31 July 2005)
Background marginalization with Gaussian noise

Measure background rate \(b = \hat{b} \pm \sigma_b \) with source off. Measure total rate \(r = \hat{r} \pm \sigma_r \) with source on. Infer signal source strength \(s \), where \(r = s + b \). With flat priors,

\[
p(s, b | D, M) \propto \exp \left[-\frac{(b - \hat{b})^2}{2\sigma_b^2} \right] \times \exp \left[-\frac{(s + b - \hat{r})^2}{2\sigma_r^2} \right]
\]
Marginalize b to summarize the results for s (complete the square to isolate b dependence; then do a simple Gaussian integral over b):

$$p(s|D, M) \propto \exp \left[-\frac{(s - \hat{s})^2}{2\sigma_s^2} \right] \quad \hat{s} = \hat{r} - \hat{b} \quad \sigma_s^2 = \sigma_r^2 + \sigma_b^2$$

⇒ Background *subtraction* is a special case of background *marginalization.*
Bayesian Solution to On/Off Problem

First consider off-source data; use it to estimate b:

\[p(b|N_{\text{off}}, I_{\text{off}}) = \frac{T_{\text{off}}(bT_{\text{off}})^{N_{\text{off}}} e^{-bT_{\text{off}}}}{N_{\text{off}}!} \]

Use this as a prior for b to analyze on-source data. For on-source analysis $I_{\text{all}} = (I_{\text{on}}, N_{\text{off}}, I_{\text{off}})$:

\[p(s, b|N_{\text{on}}) \propto p(s)p(b)[(s + b)T_{\text{on}}]^{N_{\text{on}}} e^{-(s+b)T_{\text{on}}} \quad |\quad I_{\text{all}} \]

$p(s|I_{\text{all}})$ is flat, but $p(b|I_{\text{all}}) = p(b|N_{\text{off}}, I_{\text{off}})$, so

\[p(s, b|N_{\text{on}}, I_{\text{all}}) \propto (s + b)^{N_{\text{on}}} b^{N_{\text{off}}} e^{-sT_{\text{on}}} e^{-b(T_{\text{on}}+T_{\text{off}})} \]
Now marginalize over b:

$$p(s|N_{on}, l_{all}) = \int db \ p(s, b | N_{on}, l_{all})$$

$$\propto \int db \ (s + b)^{N_{on}} b^{N_{off}} e^{-sT_{on}} e^{-b(T_{on} + T_{off})}$$

Expand $(s + b)^{N_{on}}$ and do the resulting Γ integrals:

$$p(s|N_{on}, l_{all}) = \sum_{i=0}^{N_{on}} C_i \frac{T_{on}(sT_{on})^i e^{-sT_{on}}}{i!}$$

$$C_i \propto \left(1 + \frac{T_{off}}{T_{on}}\right)^i \frac{(N_{on} + N_{off} - i)!}{(N_{on} - i)!}$$

Posterior is a weighted sum of Gamma distributions, each assigning a different number of on-source counts to the source. (Evaluate via recursive algorithm or confluent hypergeometric function.)
Example On/Off Posteriors—Short Integrations

$T_{\text{on}} = 1$

$T_{\text{off}} = 1, \ N_{\text{off}} = 9$

$N_{\text{on}} = 6$

$N_{\text{on}} = 9$

$N_{\text{on}} = 16$

$p(s)$

$s \ (s^{-1})$
Example On/Off Postiors—Long Background Integrations

$T_{\text{on}} = 1$

$T_{\text{off}} = 1, \quad N_{\text{off}} = 9$

$T_{\text{off}} = 10, \quad N_{\text{off}} = 90$

$N_{\text{on}} = 6$

$N_{\text{on}} = 9$

$N_{\text{on}} = 16$

$p(s)$

$s \ (s^{-1})$
Multibin On/Off

The more typical on/off scenario:

Data = spectrum or image with counts in many bins

Model M gives signal rate $s_k(\theta)$ in bin k, parameters θ

To infer θ, we need the likelihood:

$$\mathcal{L}(\theta) = \prod_{k} p(N_{on,k}, N_{off,k} | s_k(\theta), M)$$

For each k, we have an on/off problem as before, only we just need the marginal likelihood for s_k (not the posterior). The same C_i coefficients arise.

XSPEC and CIAO/Sherpa provide this as an option.

CHASC approach does the same thing via data augmentation.
Bayesian Computation

Large sample size: Laplace approximation

- Approximate posterior as multivariate normal $\rightarrow \text{det(covar)}$ factors
- Uses ingredients available in χ^2/ML fitting software (MLE, Hessian)
- Often accurate to $O(1/N)$

Low-dimensional models ($d \lesssim 10$ to 20)

- Adaptive quadrature
- Monte Carlo integration (importance sampling, quasirandom MC)

Hi-dimensional models ($d \gtrsim 5$)

- Posterior sampling—create RNG that samples posterior
- MCMC is most general framework
Outline

1. The Big Picture
2. Foundations—Logic & Probability Theory
3. Inference With Parametric Models
 - Parameter Estimation
 - Model Uncertainty
4. Simple Examples
 - Binary Outcomes
 - Normal Distribution
 - Poisson Distribution
5. Application: Extrasolar Planets
6. Probability & Frequency
Extrasolar Planets

Exoplanet detection/measurement methods:

- **Direct**: Transits, gravitational lensing, imaging, interferometric nulling
- **Indirect**: Keplerian reflex motion (line-of-sight velocity, astrometric wobble)

The Sun’s Wobble From 10 pc
Radial Velocity Technique

As of May 2007, 242 planets found, including 26 multiple-planet systems

Vast majority (230) found via Doppler radial velocity (RV) measurements

Analysis method: Identify best candidate period via periodogram; fit parameters with nonlinear least squares

Issues: Multimodality & multiple planets, nonlinearity, stellar “jitter,” long periods, marginal detections, population studies...
Keplerian Radial Velocity Model

Parameters for single planet

- $\tau =$ orbital period (days)
- $e =$ orbital eccentricity
- $K =$ velocity amplitude (m/s)
- Longitude of pericenter ω
- Mean anomaly of pericenter passage M_p
- System center-of-mass velocity v_0

Velocity vs. time

$$v(t) = v_0 + K \left(e \cos \omega + \cos[\omega + v(t)] \right)$$

True anomaly $v(t)$ found via Kepler’s equation for eccentric anomaly:

$$E(t) − e \sin E(t) = \frac{2\pi t}{\tau} − M_p; \quad \tan \frac{v}{2} = \left(\frac{1 + e}{1 − e} \right)^{1/2} \tan \frac{E}{2}$$

A strongly nonlinear model!

Kepler’s laws relate (K, τ, e) to masses, semimajor axis a, inclination i
The Likelihood Function

Keplerian velocity model with parameters $\theta = \{K, \tau, e, M_p, \omega, v_0\}$:

$$d_i = v(t_i; \theta) + \epsilon_i$$

For measurement errors with std dev’n σ_i, and additional “jitter” with std dev’n σ_J,

$$L(\theta, \sigma_J) \equiv p(\{d_i\} | \theta, \sigma_J)$$

$$= \prod_{i=1}^{N} \frac{1}{2\pi \sqrt{\sigma_i^2 + \sigma_J^2}} \exp \left[-\frac{1}{2} \frac{[d_i - v(t_i; \theta)]^2}{\sigma_i^2 + \sigma_J^2} \right]$$

$$\propto \prod_{i} \frac{1}{2\pi \sqrt{\sigma_i^2 + \sigma_J^2}} \exp \left[-\frac{1}{2} \chi^2(\theta) \right]$$

where $$\chi^2(\theta, \sigma_J) \equiv \sum_i \frac{[d_i - v(t_i; \theta)]^2}{\sigma_i^2 + \sigma_J^2}$$

Ignore jitter for now . . .
What To Do With It

Parameter estimation

Posterior dist’n for parameters of model \(M_i \) with \(i \) planets:

\[
p(\theta|D, M) \propto p(\theta|M)\mathcal{L}_i(\theta)
\]

Summarize with mode, means, credible regions (found by integrating over \(\theta \))

Detection

Calculate probability for no planets (\(M_0 \)), one planet (\(M_2 \)) Let \(I = \{ M_i \} \).

\[
p(M_i|D, I) \propto p(M_i|I)\mathcal{L}(M_i)
\]

where \(\mathcal{L}(M_i) = \int d\theta \ p(\theta|M_i)\mathcal{L}(\theta) \)

Marginal likelihood \(\mathcal{L}(M_i) \) includes “Occam factor”
Design

Predict future datum d_t at time t, accounting for model uncertainties:

$$p(d_t|D, M_i) = \int d\theta \ p(d_t|\theta, M_i) \ p(\theta|D, M_i).$$

1st factor is Gaussian for d_t with known model; 2nd term & integral account for uncertainty

Bayesian adaptive exploration

Find time likely to make updated posterior shrink the most. Information theory \rightarrow best time has largest d_t uncertainty (maximum entropy in $p(d_t|D, M_i)$)
Periodogram Connections

Assume circular orbits: \(\theta = \{ K, \tau, M_p, v_0 \} \)

Frequentist

For given \(\tau \), maximize likelihood over \(K \) and \(M_p \) (set \(v_0 \) to data mean, \(\bar{v} \)) \(\rightarrow \) profile likelihood:

\[
\log L_p(\tau, \bar{v}) \propto \text{Lomb-Scargle periodogram}
\]

Bayesian

For given \(\tau \), integrate ("marginalize") likelihood \(\times \) prior over \(K \) and \(M_p \) (set \(v_0 \) to data mean, \(\bar{v} \)) \(\rightarrow \) marginal posterior:

\[
\log p(\tau, \bar{v} | D) \propto \text{Lomb-Scargle periodogram}
\]

Additionally marginalize over \(v_0 \) \(\rightarrow \) floating-mean LSP
Kepler Periodogram for Eccentric Orbits

The circular model is linear wrt $K \sin M_p$, $K \cos M_p \rightarrow$ coincidence of profile and marginal.

The full model is nonlinear wrt e, M_p, ω.

Profiling is known to behave poorly for nonlinear parameters (e.g., asymptotic confidence regions have incorrect coverage for finite samples; can even be inconsistent).

Marginalization is valid with complete generality; also has good frequentist properties.

For given τ, marginalize likelihood \times prior over all params but τ:

$$\log p(\tau|D) \propto \text{Kepler periodogram}$$

This requires a 5-d integral.

Trick: For K prior $\propto K$ (“interim prior”), three of the integrals can be done analytically \rightarrow integrate numerically only over (e, M_p)
A Bayesian Workflow for Exoplanets

Use Kepler periodogram to reduce dimensionality to 3-d \((\tau, e, M_p)\).

Use Kepler periodogram results \((p(\tau), \text{moments of } e, M_p)\) to define initial population for adaptive, population-based MCMC.

Once we have \(\{\tau, e, M_p\}\), get associated \(\{K, \omega, v_0\}\) samples from their exact conditional distribution.

Fix the interim prior by weighting the MCMC samples.

(See work by Phil Gregory & Eric Ford for simpler but less efficient workflows.)
A Bayesian Workflow for Exoplanets
Estimation Results for HD222582

24 Keck RV observations spanning 683 days; long period; high e

Kepler Periodogram
Differential Evolution MCMC Performance

Marginal for \((\tau, e)\)

Convergence: Autocorrelation

Reaches convergence much more quickly than simpler algorithms
Multiple Planets in HD 208487

Phil Gregory’s parallel tempering algorithm found a 2nd planet in HD 208487.

\[\tau_1 = 129.8 \, \text{d}; \quad \tau_2 = 909 \, \text{d} \]
Adaptive Exploration for Toy Problem

Data are Kepler velocities plus noise:

\[d_i = V(t_i; \tau, e, K) + e_i \]

3 remaining geometrical params \((t_0, \lambda, i)\) are fixed.

Noise probability is Gaussian with known \(\sigma = 8 \text{ m s}^{-1}\).

Simulate data with “typical” Jupiter-like exoplanet parameters:

\[
\begin{align*}
\tau & = 800 \text{ d} \\
e & = 0.5 \\
K & = 50 \text{ ms}^{-1}
\end{align*}
\]

Goal: Estimate parameters \(\tau, e\) and \(K\) as efficiently as possible.
Cycle 1: Observation

Prior “setup” stage specifies 10 equispaced observations.
Cycle 1: Inference

Use flat priors,

\[p(\tau, e, K|D, I) \propto \exp[-Q(\tau, e, K)/2\sigma^2] \]

\(Q = \) sum of squared residuals using best-fit amplitudes.

Generate \(\{\tau_j, e_j, K_j\} \) via posterior sampling.
Cycle 1 Design: Predictions, Entropy
Cycle 2: Observation

![Graph of v (m s⁻¹) vs. t (d)](image-url)
Cycle 2: Inference

"Volume" $V_2 = \frac{V_1}{5.8}$
Evolution of Inferences

Cycle 1 (10 samples)

Cycle 2 (11 samples; $V_2 = V_1/5.8$)
Cycle 3 (12 samples; $V_3 = V_2/3.9$)

Cycle 4 (13 samples; $V_4 = V_3/1.8$)
Outline

1. The Big Picture

2. Foundations—Logic & Probability Theory

3. Inference With Parametric Models
 - Parameter Estimation
 - Model Uncertainty

4. Simple Examples
 - Binary Outcomes
 - Normal Distribution
 - Poisson Distribution

5. Application: Extrasolar Planets

6. Probability & Frequency
Probability & Frequency

Frequencies are relevant when modeling repeated trials, or repeated sampling from a population or ensemble.

Frequencies are *observables*:

- When available, can be used to *infer* probabilities for next trial
- When unavailable, can be *predicted*

Bayesian/Frequentist relationships:

- General relationships between probability and frequency
- Long-run performance of Bayesian procedures
- Examples of Bayesian/frequentist differences
Relationships Between Probability & Frequency

Frequency from probability

Bernoulli’s law of large numbers: In repeated i.i.d. trials, given
\[P(\text{success} | \ldots) = \alpha, \]
predict

\[
\frac{N_{\text{success}}}{N_{\text{total}}} \rightarrow \alpha \quad \text{as} \quad N_{\text{total}} \rightarrow \infty
\]

Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the Doctrine of Chances” → First use of Bayes’s theorem:
Probability for success in next trial of i.i.d. sequence:

\[
E_\alpha \rightarrow \frac{N_{\text{success}}}{N_{\text{total}}} \quad \text{as} \quad N_{\text{total}} \rightarrow \infty
\]
Subtle Relationships For Non-IID Cases

Predict frequency in dependent trials

\[r_t = \text{result of trial } t; \ p(r_1, r_2 \ldots r_N|M) \text{ known}; \text{ predict } f \]

\[\langle f \rangle = \frac{1}{N} \sum_{t} p(r_t = \text{success}|M) \]

where \[p(r_1|M) = \sum_{r_2} \cdots \sum_{r_N} p(r_1, r_2 \ldots |M_3) \]

Expected frequency of outcome in many trials = average probability for outcome across trials.

But also find that \(\sigma_f \) needn’t converge to 0.

Infer probabilities for different but related trials

Shrinkage: Biased estimators of the probability that share info across trials are better than unbiased/BLUE/MLE estimators.

A formalism that distinguishes \(p \) from \(f \) from the outset is particularly valuable for exploring subtle connections. E.g., shrinkage is explored via hierarchical and empirical Bayes.
Frequentist Performance of Bayesian Procedures

Many results known for parametric Bayes performance:

- Estimates are consistent if the prior doesn’t exclude the true value.
- Credible regions found with flat priors are typically confidence regions to $O(n^{-1/2})$; “reference” priors can improve their performance to $O(n^{-1})$.
- Marginal distributions have better frequentist performance than conventional methods like profile likelihood. (Bartlett correction, ancillaries, bootstrap are competitive but hard.)
- Bayesian model comparison is asymptotically consistent (not true of significance/NP tests, AIC).
- For separate (not nested) models, the posterior probability for the true model converges to 1 exponentially quickly.
- Wald’s complete class theorem: *Optimal* frequentist methods are *Bayes rules* (equivalent to Bayes for some prior)

Parametric Bayesian methods are typically good frequentist methods.
(Not so clear in nonparametric problems.)